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Abstract

In this paper, we present a subgradient algorithm for the problem
Min {F(x); x € R"} where F(x) = Max {fi(x); i=1, 2, ..., m} and where
fi(x) = Z fij(x)' Each fij is assumed to be a proper convex function, and
the numbgr of different subgradient sets associated with nondifferentiable

points of f1 is assumed to be finite on any bounded set. Problems belonging

3

to this class include those where the fij are 2p - norms (1 < p < =); for
example, the linear approximation problem and both the minimax and minisum
problems of location theory. The algorithm is an extension of the work of
Dem'yanov and Malozemov [6]-

We prove convergence of the algorithm to an € - optimal solution and
demonstrate its effectiveness by solving a number of problems from location

theory and linear approximation theory. Our computational results are compared

with other solution methods.
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1. Introduction

The minimax problem that we consider

(P) Min F(x), F(x) = {fi(x); t w1, 2, cisy W),
xeR"
= Z fij’ convex not necessarily differentiable,
i=1

is a special case of an unconstrained nondifferentiable convex programming
problem. For m = 1, we minimize a sum of convex nondifferentiable functions
and we call this problem a minisum problem.

To solve such nondifferentiable convex problems, it seems straightforward
to extend the steepest descent method, using the fact that the steepest descent
direction is given by the opposite of the element of minimum norm in the sub-
gradient set. Unfortunately, it is well-known that this extended procedure
is in general not convergent [6, 19]. As is indicated in [4], it is necessary
to consider a larger set than the subgradient set itself in order to guarantee
convergence.

The methods proposed in the literature to accomplish this can be divided
into two main families.

The first family enlarges the subgradient set at any point and determines
a descent direction from this enlarged set. For example, Dem'yanov and
Malozemov [6] solve minimax problems with continuously differentiable functionms
by considering also 'near binding' functions in the following way: to the
extreme points of the subgradient set (formed by the gradients of the binding
functions) they add the gradients of those functions which are almost bindifig.
In another study, Bertsekas and Mitter [2] used the e-subgradient set to
calculate a descent direction. All of these methods require the knowledge
of the complete subgradient set.

By contrast, the second family requires only partial local information,

in general only one element of the subgradient set. At each step, a subgradient

O e A AT S B T




is added to a 'bundle' of previous subgradients and a descent direction is

obtained from this bundle. At some steps, the bundle is reinitialized so
that it always consists of a limited number of subgradients. This idea has

been proposed initially by Lennr;chal [14] and Wolfe [19]. A nice feature

of these methods is that they are conjugate gradient methods [15] when

applied to smooth problems. However, it is well-known that conjugate
gradient methods require very accurate line searches [11, 15], thus con-
siderable time has to be spent on the line search part of these algorithms.
Further extensions of these methods have been developed by Feuer [9] and
recently by Mifflin [16]. In these two works, the idea of bundling is
intimately related to the generalized gradient of Clarke [3].

Our approach is more related to the first class of methods in that we
require the same type of local information. However, we introduce the concept
of considering subgradients at neighboring points of the current iterate. Thus
in some sense, we anticipate nondifferentiability [4, p. 43].

As an overview of what follows, in Section 2 we introduce notation and
definitions. In Section 3, we discuss the outcome of the direction finding
optimization problem and show that we either find a direction of descent,
or we have attained a near optimal point. Then, after presenting the algorithm
in Section 4, we prove in Section 5 that it is convergent. In this section, !
we combine the methods used in [4] and [6] but is 1s also necessary to rely
on the properties of the functions involved. Section 6 contains details for
a modified version of the algorithm, while Section 7 gives some computational
results. The following notations and basic definitions will be used in the

remaining sections.
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We denote n-dimensional Euclidean space as R" and lellp as the 2,-norm
of x ¢ R", where ||x|| 1s the %,-norm. Given a point x e R", we denote the
Euclidean ball about x of radius n as N(x, n). In the case where x = 0 and
n=1, B =N(0, 1); that is, B is the Euclidean unit ball.

Given a function F, defined on Rn, the subgradient set of F at x is
denoted as 3F(x), and the directional derivative of F at x in the direction
y is F'(x, y).

Given a subset S c Rn, we let Conv(S) be the convex hull of S and Nr(S)
be the element of mirimum Euclidean norm in S when S is closed and convex.

Given any function F defined on S, we let 3F(S) = v {0F(x); x € S}.
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2. Definitions and Notations

We shall assume that the functions f1 involved in the definition of

3
2
F(x) = Max {fi(x) -jglfiJ(X); e X2, iian W)

are convex and finite on R®. For notational convenience, we write each fi

as the sum of exactly £ functions fi , assuming, if necessary, that some of

3

are identically zero on R". Then it is clear that each f, is a con-

3 i

tinuous convex function and thus, F is a finite convex, continuous function on

the fi

.

Suppose € > 0 is given. At each point x, we consider the set.of indices
R(x, €)= {1 € {1, 2, ..., m}; fi(x) > F(x) - el. (2.1)
In particular
R(x, 0) = {i ¢ {1, 2, ..., m}; fi(x) = F(x)}, and (2.2)
R(x, el).g R(x, ez) for 0 < eli €90 (2.3)
We shall make use of the following property [17]:

9F(x) = Conv (v {3f (x); 1 ¢ R(x, O)}). (2.4)

We restrict our attention to the functionsf&d which belong to the class
of functions defined below.

Definition 2.1 A finite convex function is LFS if, in any closed bounded

Euclidean ball, the number of different subgradient sets, corresponding to

the points of nondifferentiability of this functiom, is finite. (LFS is an

abbreviation for the phrase'locally finitely subdifferentiable').

Assumption A.1 The functions f:l.j are LFS.

The concept of LFS fun;tionl originated from the study of minimization pro-
blems in location theory, where functions involving norms are frequently en-
countered, such as ||x - nllp. 1 <p< e The function ||z||1 (for x € R2) 1s
not differentiable along either axis, but the total number of different sub-

gradient sets associated with all points of nondifferentiability is five.

4
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As an example, we note that piecewise linear functions are also LFS.
The representation of each function fi as a sum of LFS functions may
be useful, because the sum of LFS functions is not always LFS. As an example,

consider xl2 + xz2 + lelll, x = (x;, X)) € R?, which viewed as a single

function is not LFS. But f, = xl2 + x22 and f, = ||x||1 are each LFS.

In the next definition, we introduce the points of nondifferentiability

of a function fij'
Definition 2.2

Gij(x’ n) = {x} v {y; y € N(x, n), f,. not differentiable at y}.

ij
We then define the set S, which is our enlarged subgradient set, obtained
by considering also neighboring points of nondifferentiability.

Definition 2.3

2
s, (x, ) sjzl 2ty 6y &, SRS e A (2.5)

S(x, €, n) = Conv. (U fsi (x, n); 1 e R (x, €)}). (2.6)
The following example illustrates Definicion 2.3.
Example 1. Consider the problem

ztﬁz Max (£, (x), £,00}, £, = [|x]]; = x| + |x,[,

£,(x) = [lx - @, -1) Ill - |x1 -1] + |x2 +1].
Let 2 = 1, e = .2 and n = 1. At x5 = (.9, 1) we have
£1(xg) = 1.9, £,(x)) = 2.1 = F(x), R(x,, €) = {1, 2},
afl(‘o) - {(1’1)}3 afz(xo) - {(-1’ 1)}.
Furthermore, in N(xo, n), there are points of nondifferentiability

(a) for fl' along the axis x, = 0 and at (.9, 0), and

1

(b) for f2. along the line x, = 1,

1
These supplementary points yield two more different sets to include in S,

Conv ({1, -1), @, 1)), Comv ({(-1, 1), (1, 1)},
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Hence, S(xo, e, n) is the triangle
Conv ({(-1) 1)’ (19 1)) (ln ‘1)})'
On the other hand, suppose we choose £ = 2 with fll(x) = |xll, flz(x) = lle,

f21(x) = lxl - 1}, f22(x) = |x2 + 1|. In this case, it is easy to check that
Sl(xo, n) = Conv ({(1, 1), (-1, 1), (-1, -1), (1, -1)}),
Sz(xo, n) = Conv ({(1, 1), (-1, 1)}).

Then S(xo, €, n) is the square

S(xc, €, ﬂ) = Conv ({(1: 1)9 ('l, 1), (-1, -1)9 (1’ -1)})'

Remark. From Definitions 2.2 and 2.3, it is clear that 3?13(x) c afij(Gij(x, n)),

S e SO P F 8 R AR R

and,
L )
of ; (x) -jzlafij (x) Sj.z.lafii (644(x, n)) = 8,(x, ),

£ o X, T vuiy M 2.7)

Since, by (2.3),
R(x, 0) < R(x, €),

we get from (2.7)
v {S;(x, n); 1 € R(x, 0)}

N

U {afi(x); i ¢ R(x, 0)}

U {Si(x, ni; i e R(x, €)},

in

and consequently,

Conv (U {3fi(x); i e R(x, 0)}) < Conv (v (Si(x, n); 1 € R(x, €)}).

Then (2.4) and (2.8) imply

aF(x) < s(x, €, n). (2.9)

From Definition 2.3, it is easy to establish the following property.

Property 2.1. S(x, €, n) is a nonempty compact convex subset of R".

(2.8)
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rrootr. rrom Assumption A.l, each set

(x, n))’ j-]-. 2. veey 2' 1-1, 2, ceey M,

afij(cij
is a finite union of nonempty compact sets, so that afij(Gij(X, n)) is itself
a compact set. Hence, the finite sum

L

leafij(cij(x’ n)) = Si(x, e 183, Boiiy B,

is also a compact set and the set
u {s;(x, n); 1 € R(x, €)}

is a finite union of nonempty compact sets. Thus, this set is also a nonempty
compact set and Property 2.1 is a direct consequence of Theorem 17.2 of [18]. ||

S(x, €, n), which contains the subgradient set but also pertinent local
information, now replaces this subgradient set for the determination of a
descent direction and the corresponding directional derivative, provided
that they exist. These will be given by the next definitionm.

Definition 2.4. At any point x, let

b(x, €, n) = Min {Max {(g, d); d € S(x, &, n) ; |lgll < 1}. (2.10)

By compactness of S(x, €, n) and of the Euclidean unit ball B, this
quantity is always well-defined, Using a minimax theorem (Corollary 37.3.2,[18])
since the two sets S(x, €, n) and B are both non-empty compact convex sets,
we obtain
Property 2.2

v(x, €, n) = =||Nc(S(x, €, n))|]. (2.11)
Proof . $(x, €, n) = Min {Max {(g, d); d ¢ S(x, €, n)}; g ¢ B}
= Max {Min {(g, d); g € B}; d € S(x, €, n)}
= Max {(d, -d/||d|]); d € S(x, €, n)}
= - Min {j|d][|; @ € S(x, €, n)}

= = [Ne(S(x,. €, A))|]. [i

As a consequence of Property 2.2, we have y = 0 or y < 0. These are two

cases that we consider in the next section,
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3. Study of the Alternative y(x, €, n) = 0 or ¥(x, €, n) < O

As shown in Section 2, y(x, €, n) is similar to a directional
derivative. Hence it is reasonable to expect that its value will give some
clue about the optimality of the point x. Before considering the two cases
v(x, ¢, n) = 0 and Y(x, €, n) < 0, we prove two lemmas which will be useful
in the sequel.
Lemma 3.1 Let X be a non-empty compact subset of K". Then the subgradients

of the functions f,, are uniformly bounded on the set X' = {y; y ¢ N(x, n),

3
x ¢ X}. That is, 9dM, 0 < M < « such that

given any y € X' and any s ¢ afij(y)'

[Is|| < M, Viw1, 2, sisna iy BEml, 2, ooy 8
Proof. Since X is compact, X' is also compact. Then, by Theorem 24.7 of

[18],3fij(x') is a non-empty compact subset of R" and consequently, the number

=Sup {||s]|]|; s € of  (X')}

My 3

is finite. Then
M = Max {Mij; Lo X By wane By T o Ee By viny K}
sétisfies the requirements of the Lemma. |
In Lemma 3.2, we shall consider the following piecewise linear function:
V(z) = Max {(wk, 2) =v.: k=12 ...4},
in which the w, are q given vectors of R" and the Vi are q real numbers.
Lemma 3.2 A necessary and sufficient condition that the infimum v* of V(2)

be attained is that there exists a convex combination of the Vi equal to the
null vector, that is, ]Ak, k=1,02 sivy qs Ak > 0 such that

X A, = 1 and Z Aw, =0,

X k k k"k

Furthermore, v* > - J Ay and if the Ak are unique,
k

vk = - Z A
k

v

kk’
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Proof. The infimum of V(z) is attained if and only if the linear program

Min v
s.t. (wk’ 2) = Vk - f b k = 1, 2. cesey q

has an optimal solution. Its dual may be written

Min } v, u
k
s.t. JuV =0
e
Ju =1
- Yk
u 20, k=1,2, ..., 4.

By duality theory, if the dual is not feasible, v* = -», Otherwise, v* is

finite and for any dual feasible solution Ak’ k=1, 2, ivsy D
vk > -} MV -
k
If there is only one feasible solution, then
vk = - F AV [
k

We now consider ¥(x, €, n) = 0. We call such a point x, at which

¢y(x, €, n) = 0, a stationary point. Let F* = F(x*) be the function value

at an optimal point x*, provided such a point exists. From the two previous
lemmas, we obtain the following theorem which provides a bound on the differ-
ence between F* and the function value at » stationary point.
Theorem 3.3 For any stationary point x of a compact set X, we have

F(x) - € = 24nM < F* < F(x). 3.1)

Proof. Stationarity at x is equivalent to 0 ¢ S(x, €, n).

5
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With S(x, €, n) as the convex hull of u {8, (x, n); 1 ¢ R(x, €e)}, 0 € S(x, €, n)

if and only if there exists Ak’ W such that

kk >0 s Rmly s gtuedl, (3.2)
W €U {Si(x, n); 1 € R(x, ¢€)} (3.3)
where,
§ Ak =1 (3.4)
k=1
and
§ A w,o =0, (3.5)
k=1 k' k

For arbitrary k, 1 < k < q, we have that W € Sh(x, n) for some h ¢ R(x, €). But

L
then from the definition of Sh(x, n), we have that v = Z Vier where
r=1
w, € 3f (G _(x, n)). (3.6)

kr hr " hr

Let Yee € Ghr(x, n), where Vier € afhr(ykr) for r= 1, 2, vies s

From the subgradient inequality, ¥r = 1, 2, ..., %,

n
fhr(z) » fht(ykr) + (wkr’ z - ykr)’ ¥zeR . 3.7)
Furthermore for arbitrary 8ur € afhr(x),

Adding (3.7) and (3.8) yields

fhr(') > fhr(x) + (“kr’ z - ykr) + ('hr' P x). (3.9)

With x € X, a compact set, from Lemma 3.1, there exists M such that M > lllhr||
and thus,

(8 s Ve = %) 2 = M. (3.10)

10




Using (3.10) and summing (3.9) over all r = 1, ..., %,

2 L 2
£, (2) > ) £ (x) =M+ ) (w,_,z-y ),
rzl hr 'rzl hr rZI kr kr
or
2
fh(z) > fh(x) - nM + Z (wkr’ z - ykr)' (3.11)

r=1

1v

Now, since h ¢ R(x, €), fh(x) F(x) - € and then from (3.11)

£
€ - NM + X (wkr’ z - ykr)’
r=1

F(z) > £f,(z) > F(x)

or

2
F(z) > F(x) - € - inM + ) ps 2 = 9p) (3.12)
i r=1

Since k is arbitrary, we obtain

2
F(z) > F(x) - € - M + Max 1{:21("1“’ z -y k=1, ..., q}.(3.13)

L
Letting v, = ) (Weps Yyp) 1n (3.13), noting (3.2), (3.4) and (3.5) and taking
r=1

the minimum over z ¢ R on both sides of (3.13) we have by Lemma 3.2,

F* = Min F(z) > F(x) - € - ¥ - % A (3.14)

Vi .
k=1 k'k

L
Decomposing v, -rzl(wkr’ Yyp) into

2 L
] ooy -x)+] (. , %)
it kr’ “kr =1 kr
and using the inequality i

M > ('kr’ ykt X}, T=1l, cou, &,
we get

L
vy 2 -AnM - ) (Wpps X) = =LnM - ('k’ x).
r=1

11
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But then,

—? ALV, > = 3 Ay M = g O, w,, x). (3.15)
i R K R e FE

Using (3.4), (3.5) in (3.15) we get

- g AV, > = lnu. (3.16)
k=l k'k -

Therefore (3.14) and (3.16) give

F* > F(x) - € - 22nM. (3.17)

We now present an example which illustrates Theorem 3.3.
Example 2. Consider the very simple problem

HinzF(x)g F(x) = lelll o le, * Ile°
xeR

With € = 0 and n = 1, we look at two different formulations of this problem.
(a) F(x) = [[x||; withm =1, 2 = 1 and clearly M = V2. The point x, = (1, 1)
is stationary since S(xo, €, 1) is the convex hull of the three points

(-1, 1), (1, 1), (1, -1).
At Xg» We have F(xo) = 2 and since F* = 0, we verify

~0.82 =2 -2x/2<0¢<2,
(b) F(x) = |xll - |x2| withm=1, 2 = 2 and M = 1. x, is also stationary
because S(xo, €, n) is rhe square

Conv ({(1, 1), (-1, 1), (-1, -1), (1, -1)}).
Then, Theorem 3.3 yields

-2=2-(2)(2) <0< 2.
This example illustrates a general result. Hhcd each function fi is itself
LFS, choosing % = 1 will give better bounds in the inequalities

F(x) - ¢ - 24nM < F* < F(x).

12
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L
as Z fir and decompose any subgradient 8 of
r=1

To see this result, write fi
fi at x into the sum
L

. T ! 8ir* %ir
r=1

€ afit(x), i L. e e (3.18)
If we call M the bound on the norm of any subgradient of any function fir
and Ml the bound for the subgradients of the functions fi’ w3 suey By

from (3.18) we obtain
2
syll = 115 sy !l <
r=1

and consequently
M, < M. (3.19)
Writing now the inequalities given by Theorem 3.3 in both cases, £ > 1 and % =1,

we have

F(x) - e - 2nM

A

F* < F(x), (3.20)

F(x) - ¢ - 2nul < F* < F(x). (3.21)

A

But inequality (3.19) indicates that
F(x) - € - 22nM < F(x) - ¢ - 2nM1 < F*
so that in general (3.21) gives better bounds.
On the other hand, considering each f1 as a sum of £ > 1 LFS functions fij’
could ease the task of determining the sets Si(x, n). Hence, there is a trade-off
between accuracy and implementation.

The set of stationary points does not seem to have any obvious property,

such as convexity. With the problem of Example 1, and choosing £ = 1

ot bt SN T R ok o 15 N

Min Max {lel + Ile, le -1 + |xz + 1|},
(x5 %,)

the set of optimal points .is the line-segment joining the two points
(0, -1) and (1, 0). But, with ¢ = .2 and n = 1, the set of stationary points is as

sketched in Figure 1.

13
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We now consider the remaining case, y(x, €, n) < 0.

Since x is not stationary, we are able to find a descent direction.

Theorem 3.4 If y(x, €, n) < 0, then there exists a nontrivial descent direction

for F at x.
Proof. y(x, €, n) < 0 implies the existence of a direction 2o for which
0> y(x, €, n) = =||Ne(S(x, €, n))|]|
= Max {(d, gy); d € S(x, €, n)} (3.22)
= -|ldgl|
= (dy, 8p)-
Thus, the property
F'(x, g5) = Max {(d, gg)s d € F(x)}
and (2.9), (3.22) imply

F'(x, gy) < 0. [
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4. Description of the Algorithm

Using the results of Section 3, particularly Theorems 3.3 and 3.4, it is
clear how to construct a descent method for problem (P).

Choose ¢ > 0, n > 0 and X @ starting point. Set k = 0 and go to Step 1.
Step 1

At X find F(xk) and R(xk, €). Calculate S(xk, €, n) and w(xk, €, n).
Go to Step 2.
Step 2

1f w(xk, €, n) = 0, stop: X is a stationary point. If w(xk, €, n) <0,

therec exists ) for which

w(x,, £, n) = Max {(d, g s d € S(x,, €, n)}l.

Line search: find tksuch that

F(x, + t,g ) = Min F(x, + tg ).
kT Fx8k 60 X T tg

Set Xee1 = %t 8o k = k + 1 and return to Step 1.

The next section establishes that this algorithm converges to a stationary

point for the class of problems studied in this paper.
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5. Proof of Convergence

For the proof of convergence, we assume there exists some X, such that
the level set X = {x; F(x) < F(xo)} is bounded. Since F is continuous, we
deduce that the minimum value, F*, of F is attained at some x* ¢ X.

Now suppose that the starting point is Xqe The algorithm generates a
sequence of points {xk} c X, since F(xk+1) < F(xk) <F(xo) by Theorem 3.4.

If the algorithm terminates at some iteration k, by Theorem 3.3, we have an
estimate of F*, Otherwise, the infinite sequence {xk} must have a limit point
x, ¢ X. Let Kc {0, 1, 2, ...} be the set of indices such that X X,

for k > » and k ¢ K.

We now show (by contradiction) that x, is a stationary point, that is,
w(x*, e, n) =0,

Assume that y(x,, €, n) = -b < 0. First, we show that for k large enough,
w(xk, €, n) is uniformly negative, 1i.e., w(xk, €, N) < c < 0. This follows
because in a neighborhood of x,, the sets S(xk, €, n) approximate S(x,, €, n)
[4, p. 43].

Lemma 5.1 There exists a number Nl such that k ¢ K and k > N, implies
R(xk, e) € R(x,, €).
Proof. By Lemma 7.1 of [6, p. 92], 3§ > O such that ||x, - x|| < 6 implies
R(x, €) < R(x,, €). Since X, X, for k ¢ K and k + », we can find nl for
which k > N1 implies ||xk - x*|| < § and consequently R(xk, e) < R(x,, €). [
Lemma 5.2 Let g: R" + R be an LFS function and suppose {xk; k € K} > x, is a
convergent sequence. Then, for any y > 0, there exists N such that

3g(G(x,, n))c 3g(G(x,, n))+ B, ¥k > N, k € K. (5.1)
Proof. For any x ¢ R” we define G' (x, n) = G(x, n) /x so that G(x, n) =

G'(x, n) u {x}.

17




From Corollary 24.5.1 of [18] there exists N' such that Vk > N', k € K we have
ag(xk) c ag(x,) + vB. (5.2)
We now consider G'(xk, n). Define the set
H(s) = u {83(6'(xk, n)); k>s, kcK},s=1,2, .... (5.3)
From this definition, it is clear that
H(s) = 9g(u{G'(x,, n); k > 8, k ¢ K}) (5.4)
and
H(sl) < H(sz) for s, < 8- (5.5)
We suppose H(p) # ¢, ¥p > N', p ¢ K for otherwise by choosing N large enough,
G(xk, n) = {xk}, ¥k > N'and thus from (5.2) we are done. Since the sequence
(xk} is convergent, the set
u{G'(xk, n); k > p, k € K}
is contained in a closed bounded Euclidean ball and thus with g an LFS function,

H(p) is the union of a finite number of distinct subgradient sets for all p,

ool Reia

The sets of the sequence H(p) are nonempty for all p. Therefore, there must
be a finite number of subgradient sets, say, Sr, r=1, 2, ..., q, each of which
occurs infinitely often in this sequence. In other words, there exists some
N" such that
H(p) < u{sr; r=1, ..., q}, ¥p > N".

Consequently, we can find q index sets Kr, r=1, ..., q, where each Kr is
an infinite subset of K and S' = ag(yk) for some Yy € G'(xk. n), ¥k € K.

We now show that H(p) c 3g(G'(x,, n)). For fixed r, since the sequence
{xk; k ¢ K} 1is convergent, the sequence {yk; k ¢ Kr} is in a compact set
and thus has a limit point ;r' Hence there exists a lub.tquenc; k' <K,

such that y, + y_ for k + =, k ¢ K'.
k r T
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Since X, + X,, it easily follows that

y,. € N(x, n). (5.6)
Furthermore, by Corollary 24.5.1 of (18] given €' > O, iNr > N" such that

9g(y,) <Gy +e'B, ¥k e k', k>N. (5.7)
But S* = ag(yk) Vk € K'r and thus (5.7) clearly implies that

8 e % (y,). (5.8)
Since S* is not a singleton, from (5.8) we have that g is not differentiable at
;r’ and thus using (5.6)
Y. € G' (x4, n). (5.9)
From (5.8) and (5.9) it follows that ST c ag(G'(x*, n)) and hence, for
p > N"' = Max {Nr; ot ) SSRGS

H(p) < u{s™; r = 1, ..., q} c 3g(G"(x,, n)). (5.10)
Now, since ag(G'(xk, n)) < H(p) ¥k € K, k > p, defining N = Max {N', N"'},
we have from (5.2) and (5.10)

(G (x, n)) v 3g(x,) < 3g(G(x,, n)) + ¥YB, k€K, k >N,
or

9g(G(xy, n)) < 3g(G(x,, n)) + yB, ¥k ¢ K, k > N. [}
Lemma 5.3 For any ¢' > 0, there exists a number Nz such that k ¢ K and
k > N2 imply

S(x., €, n) € S(xy, €, n) + ¢'B.
Proof. By Lemma 5.1, for k > N;,» we have

S(x, €5 n) = Conv (u{S;(x,, n); 1 € R(xys €)})

< Conv (u{S,(x,, n); 1 € R(x,, €)}). (5.11)
For each i ¢ R(x,, €), si(xk’ n) was defined to be
L
8y (xper M "J_Z_l"fu‘cu"k' n)). (5.12)
s
o
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From Lemma 5.2, we know that there is some number N,, such that for k ¢ K,

2i

k > N2 and for all 3 » 1; ovus &,

i

afij(cij

Thus (5.12) and (5.13) yield

(xk, n)) < Bfij(Gij(x*, n)) + €'B/%. (5.13)

Si(xk’ n) < Si(x*, n) +e'B, ke K, k>N (5.14)

2i°
for all i ¢ R(x,, €).

Let N!

3 = Max {NZi; i € R(x,, €)} so that k € K and k > N} imply

2
U{Si(xk’ n); 1 ¢ Rix,, €)} < u{Si(x*, n); L& Rix,, )} + e'B. (5.15)

Taking the convex hull of both sides in (5.15), from (5.11) and for k in K,

2}

S(x,.» €5 n) < S(x,, €, n) + €'B. |

k > N, £ Max {Nl, N
Now, from Lemmas 5.1, 5.2 and 5.3, the uniform negativity of the quantity
w(xk, €, n) is easy to establish.
Theorem 5.4. There exists a number N2 such that for k € K and k > Nz' the
numbers w(xk, €, n) are uniformly negative and bounded away from 0, that is,
% v(x,, €, n) < -b/2 < 0. .
' Proof. 1In the result of Lemma 5.3, choose €' less than or equal to b/2. Then,
for any g with [|g|| < 1 and k > N,
Max {(d, g); d « S(x,, €, n)} < Max {(d, g); d € S(x,, €, n) + €'B}
< Max {(d, g); d ¢ S(x,, €, n)} + ¢".
Therefore

b0 €, n) = Min {Max {(d, g); d € S(x, &, M}; [[g|] < 1}

A

< Min {Max {(d, g); d € S(x,, €, M)}; [[g|| <1} + ¢

A

e.f "(x*’ €, n) + ¢'

iA

“(x*p €, n.) + b/2

A

-b/2 . : [l

We also need the following three lemmas:
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Lemma 5.5 (Cullum, et al.[4]) Let F be convex on R". Let the sequences
{xk} and {gk} satisfy

Flxp ) s Flxg +tg), 0<tc<T,

B ™ 8y and X, —> X,y k > =,
Then I'(x,, g,) > 0.

Proof. By definition,

F'(x,, 8) = 1ig+[F(x* + tg,) - F(x,)]/t.
t

But for any t ¢ [0, T],
Fix, +tg,) = 1{1&‘ l“(xk + tgk)

a«?(xk+l)
F(x,) (by continuity).

|v

| v

}. The desired result follows immediately. H

Lemma 5.6 There exists a number N_ such that for k > N3 and k ¢ K, we have

3
R(xy, 0) < R(xk, €).

SRR T B

Proof. To prove this statement, we use continuity. Suppose that i - R(x‘, 0),

ot

i.e., F(x,) = fi(x*). Since fi is continuous, for k large enough, k > Nsi

we have

BRI B RS sy )

[£,050) = £, )| < e/2.
Thus
F(x,) - €/2 < fi(xk) s Flx) + el2,

Similarly, since F 'is continuous, for k > Ng

F(x,) - €/2 < F(x) < F(x,) + e/2.
Therefore, k > Ny = Max{Hax{N:'”;i € R(x,, 0)}, Ng} and k ¢ K imply
f,0q) = F(x) > F(x,) - e/2 - F(x,) - €/2,
or fi(xk) > F(xk) - €, for all {1 ¢ R(x,, 0). Thus,
ie R(xk, €), for all 1 ¢ R(x,, 0). [
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Lemma 5.7 For any €' > 0, ¥i ¢ R(x,, 0) and ¥s ¢ of ; (x,), there exists L,

such that for any k > L1 in K, we can find s8' ¢ S(xk, €, n) satisfying
s=s8"+¢t, ||t]] <e€".

Proof. By Lemma 5.6, we know that for k € K, k > N3, R(x,, 0) < R(xk. e) and

then

kge K, k> Ny=i € R(x,, €). : (5.16)
Since fi = Z fij’ by Theorem 23.8 of [18], we can write s as

=1

s =J§lsj, 8, € Bfij(x*). ~(5.17)

For each j = 1, 2, ..., &, either f . is differentiable at x, or it is not.

i
We consider these as two cases. j
A. fij is differentiable at x,, i.e., sj = j(x*) and {Vf j(x*)} = of j(x ).
Then, according to Corollary 24.5.1 of [18], for any ¢' > 0, there exists Lij
such that k < K and k > Lij imply
I O © 9 (x,) + €'B/2. (5.18)
Since afij(x*) = {Vfij(x*)} = {sj}. (5.18) means that we can find
s'j € afij(xk) c afij(cij(xk’ n)) such that
sy = 33 + e, lltjll <e'/r. (5.19) z
B. fij is not differentiable at x,. Then for k large enough in K, k > Lij’ |
Xy € N(xk, n) and X, € Gij(xk’ n). Hence for k>'LiJ, if aj € Bfij(x*), f
sj € afij(cij(xk’ n)), i.e., %
/Ty 33 + Kys 8y o 33, tJ = 0. (5.20)
Choosing now k > Li = Max {Lij; j=1, ..., L}, we obtain, from (5.19), and
(5.20),
L L 2
8 -jZI.J -1§1('3 + tj) -jzl 'j +j§1tj, (5.21)
where
8 € ¥, (6 (x M), llt ety g nd 8 avisla
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Defining

j i
s' = g, t= ) ¢,
g1 3 gmd

it is clear, from (5.21) and (5.22), that

2
s' ejglafij(cij(xk’ n) =8 (x, n), (5.23)
and

L
el = 11 5 g1l < e
j=1

- L}
Furthermore, for k >Ly = Max {Li’ N3}, (5.16) implies Si(xk. n < S(xk, £, n)

so that by (5.23) s' ¢ S(xk, €, N). [

We now possess the results necessary for the main theorem of this section.
Theorem 5.8 Any limit point x, of a sequence generated by the algorithm is
stationary, i.e., ¥(x,, €, n) = 0.

Proof. Consider the sequence {g } defined by

w(xk. €, n) = Max {(d, gk); d e S(xk. e, n)}, ke K.
Since {gk} c B, this sequence has a limit point g, ¢ B. We then have

X Xps By * Bpo for k + » and k € K' c K.
We know that for some convex combination
{ Ag =1, 0 20, 8, € 3 (x,), 1€ R(xy, 0)
the directional derivative F'(x,, g,) is given by

F'(x,, g,) = Max {(d, g,); d ¢ 3F(x,)}

- ({ A8y By) (by (2.4)).

For each i of this convex combination, from Lemma 5.7, there exists L1 such
that for k > Li“

ve' >0, 3 s; such that 8, =8, +t, 8 ¢ S(x,» €, n), |'t1|l <e'.

Choosing k > N‘ = Max {Li}' k € K, we obtain
i

F'(xys 8y) = ({ A 81y 8,) + (E AEer 8y
- ({ Ai.i. .k) + (; Ai‘i' '* *» 'k) + ({ Aig" ..). (S.z‘)

23




' But,

A

) Aisi. gk) Max {(d, gk); d e S(xk, €, n)} (by convexity of S)
i

1A

w(xk, €, N) (by definition of 8 and y)

A

-b/2 for k > N, (by Theorem 5.4).

Thus, from (5.24) and for k > Max {N,, N,},
F'(xy, 8y) < -b/2 + ({ A80. By - 8) *+ ({ Aftes Ba)- (5.25)

Since 8, * Ba for k ¢ K', there exists N. such that k > Ng and k ¢ K' imply

: 5
; (§ Aisi' Bx = gk) 5 II{ Aisill IIS* T Skll

<M |lgy - gl < b/e.
Furthermore, choosing 0 < ¢' < b/8, since
(§ Aiti’ 8*) < ilg Aitill IIS*II = e’y
} & (5.25) becomes

F'(x,, 8,) < -b/4 < 0.

Considering now Lemma 5.5. with the sub-subsequences {xk} and (3k}, keXx',

T —
ST AT R MR e

T = + =, we have the desired contradiction. Thus, the assumption y(x,, €, n) < 0

is not valid and x, is a stationary point. |
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6. The Implemented Algorithm

When actually executed on a computer, the result of the difference
F(x) - ¢, appearing in the definition of R(x, €), is not very different
from F(x) if F(x) is a large number since in general € is small. Conse-
quently, R(x, €¢) might indeed be reduced to R(x, 0) through roundoff error and
this, in turn, could affect the convergence of the algorithm since, in effect,
we no longer consider e-binding functions.

To avoid this numerical problem, we redefine R(x, €), as is done in
[6 |, and use instead

R'(x, €) ={i=1, 2, ..., m; fi(x) > F(x) - ¢ F(x)}.

It is also necessary to suppose F* > 0. Then, modifying in a straightforward
manner Definitions 2.3 and 2.4, we have S'(x, €, n) and ¢'(x, €, n) replacing
S(x, €, n) and y(x, €, n).

Making the obvious modifications, most of the previous results need no

extra work, except for four of them that we consider now.

A. The inequalities in Theorem 3.3 should be modified as

(1 - )F(x) - 2amM < F' < F(x). (6.1)
Hence, there is another appealing feature in the use of a 'relative" e.
Rewriting (6.1) as

0 < (F(x) - F)/F(x) < ¢ + 24nM/P(x), (6.2)
suppose that the quantity e + 24nM/F(x) is equal to 10'“, where n is some
positive integer. Then F(x), whatever its magnitude, has at least n correct
digits. This is best illustrated with an example:

F(x) = 1,000,010 , € + 20nM/F(x) = 107>,

* -5
F(x) - F 10 “F(x)

Ia

10.00010 and

A

1,000,000. < F~ < 1,000,010.
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F’! B. It is easy to check the correctness of the inclusion

R' (x, 52) < R'(x, cl) for 0 :.62 <€

1
Then, we still obtain
R(x, 0) = R'(x, 0) < R'"(x, €), ¥e > 0.
Hence, in the remark following Example 1
9F(x) < S'"(x, €, n)
remains correct.
C. It is necessary to rederive Lemma 5.1, using R'(x, €).
Lemma 6.1 There exists N1 such that k € K and k > Ny imply R'(xk. €) < R'(x,, €).
Proof. Using the same argument as Dem'yanov [ g ], it is easy to establish
that
de', 0 < € < €' such that R'(x,, €) = R'(x,, €').
) % Since the fi and F are continuous, we have
lNi such that k ¢ K and k > Ni imply
|f1(xk) - fi(x*)l <(e'"~¢) Mn)/2, 11,2 ..o, m, and
N'l' such that k € K and k >N'1' imply
[F(x) = F(x,)| < (' = e)F(x,)/2(1 ~ ¢).
Thus for k ¢ K and k > Nl = Max {Ni. N;}
i F(x,) - (e' - e)F(x,)/2(1 - €) < F(x), (6.3)

£,00) < £,.(x,) + (' - OF(x,)/2.  (6.4)

Multiplying (6.3) by 1 - € and considering also (6.4), we obtain
(1 - e)F(x,) = (e' = €)F(x,)/2 < (1 ~ €)F(x)
< fi(xk) (1f 1 ¢ R'(:k. €))
< £,(x) *+ (€' - OIF(x,)/2,
that is,
(1 - e")F(x,) < £,(x,) Vi "(’k’ €). (6.5)

1 . e — b o -




But (6.5) means that ¥i ¢ R'(xk, ), 1 e R'(x,, €'). Since R'(x,, €') =
R'(x,, €), for k > N;,we have R'(xk, €) < R'(x,, €). ||
D. Lemma 5.6 needs also to be modified as follows:
Lemma 6.2 There exists N3 such that for k ¢ K and k > N3, we have

R(x,, 0) = R'(x,, 0) c R'(xk, €).
Proof. Choose any i € R'(x*, 0), so that fi(x*) = F(x,) = F,. Since fi is
continuous, there exists Néi such that for k € K and k > N;i,

,fi(x*) - fi(xk), < €F,/2. (6.6)
Similarly, with F, 3N§ such that for k > NY,

[F(x,) - F(xk)l < €F,/2. (6.7)
Hence, for k > Ny = Max{Maxﬁiéi; ieR'(x,, 0)}, N;}. we get from (6.6) and (6.7),

£,0q) > £i(x,) - € Fy/2

> Fy - € F,/2, and (6.8)
-F(xk) > =F(x,) - € Fa/2
> ~Fx - € Fa/2. (6.9)

Adding (6.8) and (6.9) yields

fi(xk) - F(xk) > - € Fy

> =€ F(xk) (since F(xk) > Fyg),

that is,

1 e R’(xk, €). ||

These are the four principal modifications to signal and, mutatis mutandis,

the convergence proof remains valid.
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We have implemented our algorithm with the modification given in Section 6.
To find the point of minimum norm in S(xk. €, n), we used, depending on
the problem considered, two different algorithms. For the minimax problems
withm > 1 and ¢ = 1, we used an algorithm of Wolfe [20]. Otherwise, for
minisum problems, where m = 1 and % > 1, we employed an algorithm from Gilbert [10].
The line search was done with quadratic fits and worked well for most
problems. We modified it when dealing with piecewise linear functions, since
in this case a quadratic fit does not seem reasonable, and devised a different
line search which has performed satisfactorily.
We solved three types of problems: minimax location, minisum location
and approximation problems. Description of the results are given below.
Minimax location problems.
The problem to solve is

Min Max {f ,(x); i=1, 2, ..., m}
n i
xR

where fi(X) may have one of the following expressions

a) w, ||xk - aillp’ for some p, 1 < p < =,
b) w, lek - xJIIP, for some p, 1 < p < =,
and x = (xl, cevs Ko s xr) € Rn, X, € R’, k=1, ..., r and n = sr.

The a, are interpreted as known locations in R® of existing facilities and the x, are
the locations of the new facilities, and where the w, are positive weights.
Results of the first minimax location problems solved are given in Table 1.
M indicates the number of existing facilities and N the number of new facilities
to be located. We ran three Type 1 problems involving zz-norna. which were
randomly generated with weights between 1 and 100 and existing facility locations

in the square 1000 by 1000, Problem 2 was a selected minimax location problem
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1)

2)

3)

4)

6)

*k

posed by Love, Wesolowsky and Kraemer and considered in [7]. Problem 2 involves
li-norms. Problems 3 and 4 are lz-norn problems discussed in [7]. The data in
Problem 5 is identical to the data in Problem 2, however ll-norns are used.
Finally, Problem 6 is a randomly generated problem using ll-norms.

For comparative purposes, we have included the execution times on
these problems using:
(a) The heuristic subgradient procedure of Hearn and Lowe [12] (all problems).

(b) A dual formulation solved by GRG [7], in the case of lz-norms (Problems
1 through 4).

(c) Another dual procedure studied by Dearing and Francis [5], in the case
of 2 -norms (Problems 5 and 6).

1
(d) The subgradient algorithm (all problems).
We have also listed the number of iterations using the subgradient algorithm.

In those cases where the last iterate was not a stationary point, the line

search could not generate a point to improve the objective function value.

Problem Execution Time Iterations

(a) (b) (e) (@)

Random data, zz—norm 1.66s 2.03s — 3.55s 25

M=50, N =1 1.15s 1.57s e 1.52s 11* 4
.95s 2.28s -— 2.52s 16

Love et al, ﬂz-norm .39s 2.06s e .66s ! 14%

M=5, N=2 ‘

Triangle #1, lz—norm .64s8 5.5s8 — 1.11s 16* ;

M= 3, N=3 |

Triangle #2, L,-norm .80s 10.5s i 1.40s 20%

M=3, N=3

Love et al, ll-norn .248 —_— 2.40s .17s 6%

M=5 N=2

Random data, zl-norn 1.16s8** —_ 2.89s 6.94s 15

M=20, N=10
The last iterate is a stationary point

Used a fixed step length,

Table 1
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For the probleme of Table 1, the value chosen for ¢ was S)xlO—6 and we

set n = 10°% or 1077,

We also devised a problem of our own which involved mixed norms. The
problem scenario reads as follows. 7Two ships have to be located in the Caribbean
sea and must be ready to intervene, in case of trouble, at any one of nine given
cities of the Caribbean Islands. Trouble may occur according to estimated
probabilities which are used as weights. Furthermore, the two ships must be

able to communicate and we must consider their mutual distance (Euclidean distance

with weight 1). Thus, the problem is

Min Max {w, . ||x, - a,|| w.||x, - a,]]| [ %, = x,]]}.
xR 1el,...,9 1111%1 7 831lp370 Yial1%Xy = 84llp42011%) = %)
xzeR

The cities and their locations are displayed in Table 2. For some cities,
the distance to a ship is well represented as Euclidean distance. But if one
city is on the opposite side of the island with respect to the ship location,
we can no longer use Euclidean distance but an lp—distance where p is chosen

between 1 and 2 (see Table 2).

cities locations 1st ship 2nd ship
Yi1 Pj1 " Pi2
Colon (Panama Canal) 11.4, 11.6 2.0 2.0 1.0 2.0
Caracas-LaGuaira (Venezuela) 35:3, 13.5 1.0 2.0 2.0 2.0
Havana (Cuba) 8.80, 37.2 1.5 1.1 1.0 1.4
Guantanamo (Cuba) 20.9, 30.6 1.5 1.5 1.0 1.9
Port-au-Prince (Haiti) 25.5, 28.0 1.5 1.4 1.5 1.2
Santo Domingo (Dom. Rep.) 29.7, 27.7 1.0 2.0 1.5 2.0
San Juan (Puerto Rico) 36.2, 127.8 0.5 1.8 1.0 1.7
Fort-de-France (Martinique) 45.5, 21.3 0.5 2.0 0.5 2.0
Montego Bay (Jamaica) 15.8, 28.2 0.5 1.1 0.5 1.8
Table 2
30

e g———p————. —




The optimal locations are (13.817, 210.358)'r and (25.818, 22.454)T, with
F* = 26.0836. This solution was found after 40 iterations and 3.15s of CPU
time. As a final check, we used the locations for the ships given by the
algorithm and measured the 2; distances between the ships and ports and the
lp—distance between the ships. All lp—distances approximately agreed with
the Rp-distances used in the algorithm with one exception. The Rp-distances
from the ships to Port-au-Prince were not in agreement with the zp-distances
used in the algorithm, but this was not important in our
problem since at the optimal solution, the functions involving Port-au-Prince
were not binding.

Minisum location problems.

The objective function to minimize has the form
F(x) = § f.lx), ze X,
where the f1 are as in the minimax location problem.
Among many minisum problems that we solved, we give here the numerical
results for two problems:
a) The 24 cities problem of Kuhn and Kuenne [13].
Starting from the center of gravity of the 24 existing facilities,
%o = (47.47945, 34.35616), the algorithm generates the result x* = (47.70779,
35.10391) in 6 iterations and .46s of CPU time, giving F* = .9528840.
After 5 iterations, the procedure of Kuhn and Kuenne reaches the result
(47.60, 35.32), which corresponds to an objective function value of .9541373.
b) A problem from Eyster et al. [8], with five existing and two new

facilities.
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The starting point is X, = (0, 0, 0, 0) and after 23 iterations we got
x* = (2.840055, 2.686639, 5.129290, 6.388482) with F* = 67.23856. The CPU
time for this problem is 1.07s. The HAP procedure used in [ 8], starting also
at Xq» stopped after 45 iterations and gave x* = (2.840, 2.687, 5.126, 6.383),
F* = 67.239

-5
In both problems a and b, we chose n = 10 ~.

Linear Approximation Problems

A linear approximation problem can be formulated as follows
Mir}1 K(Ax - b), where A is an m x n matrix and b is a vector of R®
x€R
and where K is some norm in R™ measuring the discrepancy between a desired

point, b, and an approximation, Ax, of this point.

Popular choices for K are the 21-norm and the % -norm so that we solve either

m
Min J [(Ax), - b_|
xeR" i=1 A o

or

-t L e TR IR Y

B

Min Max {I(Ax)i -b

I
xeR A

With the L -norm, and thus a minimax problem, we solved the examples given

by Barrodale and Youung [1, p. 115]. For these problems, we chose e-lO-a and n=10-16.

The results are presented in Table 3. The solutions we found are in total

agreement with those of []1 ]. Barrodale and Young did not report any computation

times or numbers of iterations.

. Problem Execution Time Iterations Optimal Value
1) Example 1 .85s 12% .6733 x 107%
£ m=33, n=3
2) Example 2 9.90s 58% .1514 x 107>
m=41, n =6
3) Example 3, Case 1  2.54s 41% .1039 x 10~
me=5,n=5 #
4) Example 3, Case 2  2.868 39% .1757 x 10>

m=5l, n=35
* The last iterate is a stationary point.

Table 3
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